Genetic Stabilization of the Drug-Resistant PMEN1 Pneumococcus Lineage by Its Distinctive DpnIII Restriction-Modification System
نویسندگان
چکیده
UNLABELLED The human pathogen Streptococcus pneumoniae (pneumococcus) exhibits a high degree of genomic diversity and plasticity. Isolates with high genomic similarity are grouped into lineages that undergo homologous recombination at variable rates. PMEN1 is a pandemic, multidrug-resistant lineage. Heterologous gene exchange between PMEN1 and non-PMEN1 isolates is directional, with extensive gene transfer from PMEN1 strains and only modest transfer into PMEN1 strains. Restriction-modification (R-M) systems can restrict horizontal gene transfer, yet most pneumococcal strains code for either the DpnI or DpnII R-M system and neither limits homologous recombination. Our comparative genomic analysis revealed that PMEN1 isolates code for DpnIII, a third R-M system syntenic to the other Dpn systems. Characterization of DpnIII demonstrated that the endonuclease cleaves unmethylated double-stranded DNA at the tetramer sequence 5' GATC 3', and the cognate methylase is a C5 cytosine-specific DNA methylase. We show that DpnIII decreases the frequency of recombination under in vitro conditions, such that the number of transformants is lower for strains transformed with unmethylated DNA than in those transformed with cognately methylated DNA. Furthermore, we have identified two PMEN1 isolates where the DpnIII endonuclease is disrupted, and phylogenetic work by Croucher and colleagues suggests that these strains have accumulated genomic differences at a higher rate than other PMEN1 strains. We propose that the R-M locus is a major determinant of genetic acquisition; the resident R-M system governs the extent of genome plasticity. IMPORTANCE Pneumococcus is one of the most important community-acquired bacterial pathogens. Pneumococcal strains can develop resistance to antibiotics and to serotype vaccines by acquiring genes from other strains or species. Thus, genomic plasticity is associated with strain adaptability and pneumococcal success. PMEN1 is a widespread and multidrug-resistant highly pathogenic pneumococcal lineage, which has evolved over the past century and displays a relatively stable genome. In this study, we characterize DpnIII, a restriction-modification (R-M) system that limits recombination. DpnIII is encountered in the PMEN1 lineage, where it replaces other R-M systems that do not decrease plasticity. Our hypothesis is that this genomic region, where different pneumococcal lineages code for variable R-M systems, plays a role in the fine-tuning of the extent of genomic plasticity. It is possible that well-adapted lineages such as PMEN1 have a mechanism to increase genomic stability, rather than foster genomic plasticity.
منابع مشابه
Promiscuous signaling by a regulatory system unique to the pandemic PMEN1 pneumococcal lineage
Streptococcus pneumoniae (pneumococcus) is a leading cause of death and disease in children and elderly. Genetic variability among isolates from this species is high. These differences, often the product of gene loss or gene acquisition via horizontal gene transfer, can endow strains with new molecular pathways, diverse phenotypes, and ecological advantages. PMEN1 is a widespread and multidrug-...
متن کاملEvolution and genetic diversity of the Spain23F-ST81 clone causing adult invasive pneumococcal disease in Barcelona (1990–2012)
OBJECTIVES We aimed to analyse the clinical epidemiology and genetic diversity of invasive pneumococcal disease (IPD) episodes attributed to the Spain(23F)-ST81 (PMEN1) clone. METHODS Fifty-eight (2.7%) of 2117 invasive pneumococci isolated from adult patients during the 1990-2012 period shared a PFGE pattern related to the PMEN1 clone. The genotype was confirmed by multilocus sequence typing...
متن کاملGenomic Analyses of Clonal Isolates Provide Clues to the Evolution of Streptococcus pneumoniae
Organization, 2003). Efforts to limit pneumococcal disease have focused primarily on antibiotic intervention and vaccination. However, after initial, and often dramatic, successes the effectiveness of these measures has consistently been overcome by the extremely adaptable and resilient pneumococcus. S. pneumoniae is naturally competent and readily incorporates DNA fragments derived from pneumo...
متن کاملFunctional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis
Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug-resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug-resistant, hospital-a...
متن کاملDifferences in Genotype and Virulence among Four Multidrug-Resistant Streptococcus pneumoniae Isolates Belonging to the PMEN1 Clone
We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain(23F) ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015